If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+14X-140=0
a = 1; b = 14; c = -140;
Δ = b2-4ac
Δ = 142-4·1·(-140)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{21}}{2*1}=\frac{-14-6\sqrt{21}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{21}}{2*1}=\frac{-14+6\sqrt{21}}{2} $
| 1/3y-9=-6 | | 1000/x=24 | | 13t=6t^+1 | | x/8-6=11/16 | | 2n+2=1200 | | 2x+4.7=2x+4.7 | | 0.75=x/16 | | X+6=16-x | | 6x+8-4x=70 | | 9r^-39r+9=0 | | 100=3x^2 | | 6z+20=z+50 | | 2x-31=5 | | 3(6z+4)=36 | | X÷2-12=3+x | | -25z+1+35z=10z+1−25z+1+35z=10z+1 | | 4(2x+6)=16 | | 5z-10=-5 | | 4x^-2-1=0 | | 4x-2+-1=0 | | x+1/4=x+7 | | 5(2x-3)=3(3x-7)=5 | | 14x+19=5x+289 | | n*n-8=34 | | 6n-8*8=34 | | 81z-(-10)=1 | | (1/5)^60=1.15x10^-42 | | n÷4−3=18 | | 3(11x-5)=85 | | 6y+2=4y-10 | | -1-3=2(x+1) | | (20-2x)(10-2x)=0 |